Development of Novel Water-Gas-Shift Membrane Reactor

Addressing

Barrier L: H₂ Purification/CO Clean-up

Target: <10 ppm CO in Product Stream

W.S. Winston Ho

The Ohio State University, Columbus, OH

DOE Hydrogen & Fuel Cells 2003 Annual Merit Review Claremont Resort Hotel, Berkeley, CA, May 19-22, 2003

Water-Gas-Shift Membrane Reactor

- Relevance/Objectives
 - Produce Enhanced H₂ Product with <10 ppm
 CO at High Pressure Used for Reforming
 - Overcome Barrier L: H₂ Purification/CO Clean-up
 - Achieve Target: <10 ppm CO in Product Stream
- Approach: CO₂-Selective Membrane
 - Remove CO₂ for H₂ Enhancement
 - Drive WGS Reaction to Product Side

$$CO + H_2O \rightarrow H_2 + CO_2 \uparrow$$

- Decrease CO to <10 ppm

On-Board/Off-Board Purification of Reformed Gas with Membrane

Light Weight

- Compact Membrane Module
- Simple Operation
 - Pressure Differential
 - No Moving Parts

Novel Membrane Process for H₂ Purification

Conventional / Commercial Membrane Process

Novel Membrane Process

- High-purity H₂ Recovered at High Pressure
- High-purity H₂ Product without CO₂ Desirable
 - + CO₂ acts as diluent / produces CO via reverse WGS reaction
- High H₂ Purity/Recovery via High Driving Force from Air Sweep
- Minimal Parasitic Power Required for Air Blown Separation

Fuel-Cell Fuel Processing with CO₂-Selective Membranes

Low Temperature CO₂-Selective Membrane

High Temperature CO₂-Selective Membrane

CO₂-Selective Membranes by Incorporating Amines in Polymer Networks ... Facilitated Transport

Example: Polyvinylalcohol- Containing Amine Membrane

Project Timeline

	2001		2002			2003		2004
Task	<u>4Q</u>	<u>1Q</u>	<u>2Q</u> <u>3Q</u>	<u>4Q</u>	<u>1Q</u>	<u> 2Q 3Q</u>	4Q	1Q 2Q 3Q
Phase 1								
1. Modeling Study to Show								
<10 ppm CO Feasible				\				
2. Synthesis of Novel								
Membranes								
Phase 2								
3. Characterization of								
Membranes								
4. Set-up of Lab Reactor							_	
5. Membrane Fabrication								
6. Proof-of-Concept Demo							Δ	
Phase 3							_	
7. Set-up of Membr. Reactor	r							
8. Fabrication of Prototype								
Membrane Module								
9. Prototype Reactor Demo								
ar i rototype izeactor beillo								

High CO₂/H₂ Selectivity Obtained

High CO₂ Permeability Obtained

CO₂ Permeability Did Not Change with Pressure Significantly

Feed Pressure (atm)

High CO₂/CO Selectivity Obtained

CO₂-Selective Membrane Reactor

Modeling of Water Gas Shift Membrane Reactor Shows < 10 ppm CO Achievable

Reactor Length (cm)

Modeling of WGS Membrane Reactor Shows <10 ppm CO Achievable with Cu/ZnO Catalyst

High H₂ Enhancement Achievable

CO₂/H₂ Selectivity Does Not Affect Exit CO Concentration Significantly

CO₂/H₂ Selectivity Affects H₂ Recovery

Modeling Shows < 10 ppm CO Also Achievable for 10% CO Feed

Significant Interactions/Collaborations

- Work with H2fuel / Unitel Technologies / Avista Labs on Membrane Scale-up
 - Successful Scale-up to 40 Inches Wide by ~500 ft Long
 - Membrane Evaluation by Auto Company

 Two Presentations to Freedom CAR Fuel Cell Tech Team

Summary

- Membranes with High CO₂/H₂ & CO₂/CO
 Selectivities & CO₂ Flux Synthesized
- Modeling Results for Synthesis Gases from Autothermal Reforming Show:
 - < 10 ppm CO Achievable
 - High CO Conversion Achievable
 - High H₂ Enhancement Achievable
 - High H₂ Recovery Achievable

Future Plans

Continue to Synthesize / Characterize
 Membranes with Improved Permeability

Conduct Proof-of-Concept Demonstration

 Carry out Prototype Membrane Reactor for Fuel Cell (50 kW)